Science Learning Activity Types^{1, 2}

Of the 38 science activity types that have been identified to date, 27 are focused upon helping students build their knowledge of science concepts and procedures. Seventeen of the knowledge-building activity types emphasize *conceptual* learning and 10 of these involve *procedural knowledge* employed in science learning. Eleven of the activity types describe activities that facilitate students' knowledge expression. The three categories of activity types (conceptual knowledge building, procedural knowledge building, and knowledge expression) are presented in the tables that follow, including compatible technologies that may be used to support each type of learning activity.

Conceptual Knowledge Building Activity Types

As the table of activity types below shows, teachers have a variety of options available to assist students in building science conceptual knowledge.

Activity Type	Brief Description	Possible Technologies
	Students extract information from	Web sites, electronic books,
Read Text	textbooks, laboratories, etc.; both print-	online databases
	based and digital formats	
	Students gain information from teachers,	Presentation software,
View Presentation/	guest speakers, and peers;	document camera, video
Demonstration	synchronous/asynchronous, oral or	
	multimedia	
Take Notes	Students record information from lecture,	Word processor, handheld
Take moles	presentation, group work	computer, wiki
	Students examine both still and moving	Video, document camera,
View Images/Objects	(video, animations) images/objects; print-	digital microscope, digital
	based or digital format	camera, Web sites
	Students engage in dialogue with one or	Discussion board, email,
Discuss	more peers or the entire class;	chat, videoconferencing,
	synchronous/asynchronous	interactive white board
Do a Simulation	Students interact with live or digital	Curriculum software, Web-
	simulations that demonstrate science	based simulations,
	content	personal/student response
		systems
Explore a	Students gather information/conduct	Web search engines
Topic/Conduct	background research using print-based and	
background research	digital sources	

 Table 1: Conceptual Knowledge Building Activity Types

 ² "Science Learning Activity Types" by Margaret R. Blanchard, Judi Harris and Mark Hofer is licensed under a <u>Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License</u>. Based on a work at <u>http://activitytypes.wmwikis.net/</u>.

¹ Blanchard, M. R., Harris, J., & Hofer, M. (2009, March). *Operationalizing TPACK for educators: The activity types approach to technology integration*. Part of a symposium presented at the Society for Information Technology and Teacher Education (SITE) annual conference, Charleston, SC.

Study	Students study terminology, classifications,	Web sites, quiz
	test review, etc.	software/Web sites, wikis
Have an Evocative	Students observe phenomena that raises	Video, digital microscope,
Experience	scientific questions from physical objects, organisms, or digital media	document camera, software
Distinguish	Students distinguish directly observed	SmartBoard, document
Observations from	sensory input from inferences requiring	camera, video, audio
Inferences	background knowledge	recording
Develop Predictions,	Students develop, think about predictions,	Word processor,
Hypotheses,	& select pertinent hypotheses, testable	SmartBoard, Inspiration,
Questions, Variables	questions, and variables	wiki
	Students choose relevant instruments and	Probeware, digital stirrer,
Select Procedures	methods to test questions	video, audio recorder, digital
Select I locedules		camera, digital timer,
		graphing calculator
Sequence Procedures	Students sequence the order of procedures	Simulation, curriculum
-	to collect relevant data	software, word processor
Organize/Classify	Students create a structure to organize data	Database, spreadsheet,
Data	collected	Inspiration
	Students describe relationships, understand	Spreadsheet, TinkerPlots,
Analyze Data	cause-and-effect, prioritize evidence,	Inspire Data, graphing
Anaryze Data	determine possible sources of	calculator, statistical
	error/discrepancies, etc.	software
Compare Findings	Students evaluate their findings in light of	Spreadsheets, TinkerPlots,
with Predictions/	their hypotheses	InspireData
Hypotheses		
Make Connections	Students link their findings to concepts in	Web search engines
between Findings &	the text/research publications	
Science		
Concepts/Knowledge		

Procedural Knowledge Building Activity Types

In science classrooms, building conceptual knowledge frequently requires that students use materials and "process" skills (Millar & Driver, 1987) as they develop scientific knowledge. The essential features of classroom inquiry promoted by the National Science Education Standards often engage students in procedures and the use of scientific equipment (NRC, 2000). We term this kind of understanding *procedural knowledge*, as detailed in the table below.

 Table 2: Procedural Knowledge Building Activity Types

Activity Type	Brief Description	Possible Technologies
Learn Procedures	Students learn how to safely and	Video, document camera
	appropriately handle equipment	
Practice	Students practice using equipment,	Web-based software or
	software, measuring, testing what they have	software tutorials,
	designed, etc.	probeware, document
		camera

Prepare/Clean Up	Students organize equipment or information for writing	Document camera, projector
Generate Data	Students generate data (e.g. heart rate, cooling water temperatures) by manipulating equipment or animations	Software, graphing calculators, probeware, digital balance
Collect Data	Students collect data with physical objects or simulations	Graphing calculators, video, audio, digital cameras, digital microscopes, web- based data sheets
Compute	Students calculate results from data	Scientific calculator, spreadsheet
Observe	Students make observations from physical or digital experiences	Document camera, WebCams, digital/video cameras, digital microscopes
Collect Samples	Students obtain samples/items to study (soil, bird songs, video footage)	Digital cameras, videos, audio recorder
Do Procedures	Students run trials or otherwise carry out steps to investigations (e.g. use electronic balance)	Simulation, curriculum software
Record Data	Students record observational and recorded data in tables, graphs, images, lab notes	Spreadsheet, word processor, database, handheld computer, tablet computers

Knowledge Expression Activity Types

While in many cases teachers may want their students to express similar understandings of course content, at other times they will want to encourage students to develop and express their own understandings of a given topic. The following 11 *knowledge expression activity types* afford students opportunities to share and further develop current understandings of concepts, procedures, and relationships.

Activity Type	Brief Description	Possible Technologies
Answer questions	Students respond to teacher, peer, written,	Curriculum software, word
	or digitally posed questions	processor, quiz software,
		Web sites, discussion boards
Write a Report	Students write a laboratory or research	Word processor, presentation
	report	software, video, wiki,
		podcast
Do a Presentation or Demonstration	Students present or demonstrate laboratory	Presentation software, video,
	or research findings, or other course	document camera, podcast,
	learning (e.g. a system of the human body)	video, moviemaking
		software
Take a Quiz or Test	Students respond to questions on a test or	Curriculum software, word
	quiz	processor, quiz software,
		Web sites, student response
		systems

	Students discuss opposing viewpoints	Videoconferencing,
Debate	embedded in science content knowledge,	discussion board,
	linked to ethics, nature of science, personal	personal/student response
	preferences, politics, etc.	system
	Students physically or digitally create	Modeling software, drawing
Develop or Build a	models to demonstrate content knowledge,	tools, Inspiration
Model	conduct experiments, etc. (e.g. cell model, rubber band car)	
	Students physically or digitally draw or	Drawing software, digital
Draw/Create Images	create images (from labs, observations, etc.)	camera, image editing software
	Students participate in or develop graphic	Inspiration/Kidspiration,
Concept Mapping	organizers, semantic maps, etc.	interactive whiteboards,
		drawing software
	Students participate in games; group or	Curriculum software,
Play a Game	individual; digital or physical; original or	personal/student response
	pre-made.	systems, web-based games
Develop a Game	Students develop a physical or digital	Word processor, web
	interactive game	authorizing tool, videogame
		development software (e.g.
		MIT Media Lab)
Create/Perform	Students create and/or perform a script, rap,	-
	song, poem, collection, invention, exhibit,	camera, YouTube, document
	etc.	camera, word processor,
		moviemaking software, wiki,
		web authorizing software,
		presentation software

References

Millar, R. & Driver, R. (1987). Beyond Processes. Studies in Science Education, 14, 33-62.

National Research Council. (2000). *Inquiry and the national science education standards*. Washington, DC: National Academy Press.